O(1) - C(12) - C(11) - C(14)	-10.8(3)
O(1) - C(13) - C(14) - C(11)	2.5 (3)
C(11) - C(12) - O(1) - C(13)	12.6 (2)
$C(12) \rightarrow O(1) \rightarrow C(13) \rightarrow C(14)$	-9.8 (2)
C(12) - C(11) - C(14) - C(13)	5.4 (3)

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995). Program(s) used to solve structure: SIR92 (Altomare, Cascarano, Giacovazzo & Guagliardi, 1993). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1189). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Altomare, A., Cascarano, M., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Fu, T. Y., Olovsson, G., Scheffer, J. R. & Trotter, J. (1995). Tetrahedron Lett. 36, 4353-4356.
- Molecular Structure Corporation. (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation. (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1996). C52, 2349-2351

$C_{20}H_{10}F_8$, a Divinyl Acetylene

DALE C. SWENSON, PETER A. MORKEN AND DONALD J. BURTON

Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA. E-mail: swensond@chem-po.chem.uiowa.edu

(Received 20 April 1995; accepted 9 May 1996)

Abstract

The crystal structure of the title compound shows it to be (E,E)-1,1,1,2,7,8,8,8-octafluoro-3,6-diphenylocta-2,6-dien-4-yne.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved

Comment

Defluorination of the E or Z isomer of 3,6-diphenyldecafluoroocta-3,4,5-triene yielded a substituted divinyl acetylene (I) in more than 95% isomeric purity (Morken, Burton & Swenson, 1994).

The molecules pack in the crystal in stacks along the c axis and these stacks pack in a herring-bone fashion. The trifluoromethyl groups have high thermal motion and are rotationally disordered, each methyl group having two sets of F-atom positions. The occupancy factors for the two sets of F atoms bonded to C1 (F1A, F1B, F1C and F1D, F1E, F1F) were set to 0.5. For the other disordered CF₃ group (C8), occupancy of 0.85 for F8A, F8B, F8C and 0.15 for F8D, F8E, F8F gave similar thermal parameters for the two sets and minimal residual density in the difference map.

Fig. 1. View and numbering scheme of the title compound. Ellipsoids are drawn at the 35% level. Only one orientation of each disordered trifluoromethyl group is shown for clarity. H atoms are given an arbitrarily small radius.

The octadienyne portion of the molecule is essentially flat. The average deviation from the least-squares plane (C1-C9, C15, F2, F7) is 0.031 (8) Å. Steric interaction between the *ortho* position atoms in the phenyl rings and the vinyl fluoride atoms prevents the phenyl rings from being coplanar with the dienyne plane. The dihedral angles between the dienyne plane (C1-C9, C15, F2, F7) and the phenyl ring planes are $34.4(1)^{\circ}$ (for ring C9-C14) and $35.3(1)^{\circ}$ (for ring C15-C20).

> Acta Crystallographica Section C ISSN 0108-2701 © 1996

C1 C2 C3 C4 C5 C6 C7

C8 C9

C10

C11 C12

C13 C14 C15

C16 C17 C18

C19

C20 F1A F1*B*

F1C F1D F1*E* F1*F* F2 F7 F8A F8B F8C F8D F8E F8F

Fig. 2. Stereoview showing packing in the unit cell. Both orientations of the two disordered CF3 groups are shown. Ellipsoids are drawn at the 20% level. H atoms are given an arbitrarily small displacement parameter.

Experimental

The title compound was prepared as described by Morken et al. (1994) and recrystallized from hexane.

Crystal data

$C_{20}H_{10}F_8$	Cu $K\alpha$ radiation
$M_r = 402.29$	$\lambda = 1.54184 \text{ Å}$
Monoclinic	Cell parameters from 22
$P2_1/n$	reflections
a = 9.748(2) Å	$\theta = 19-39^{\circ}$
b = 19.080(3) Å	$\mu = 1.307 \text{ mm}^{-1}$
c = 9.955 (2) Å	T = 291 K
$\beta = 109.14 (1)^{\circ}$	Needle, c axis along needle
$V = 1749 (1) \text{ Å}^3$	direction
Z = 4	$0.45 \times 0.15 \times 0.10$ mm
$D_{\rm x} = 1.53 {\rm Mg} {\rm m}^{-3}$	Colorless
D_m not measured	

Data collection

Enraf–Nonius CAD-4
diffractometer
$\theta/2\theta$ scans
Absorption correction:
empirical, from 3 ψ scans
at 10° intervals (MolEN;
Fair, 1990)
$T_{\min} = 0.9303, T_{\max} =$
0.9985
7137 measured reflections
2690 independent reflections

Refinement

Refinement on F	Weighting scheme based
R = 0.050	on measured e.s.d.'s
wR = 0.076	$(\Delta/\sigma)_{\rm max} = 0.077$

 $\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

x	у	z	$U_{\rm eq}$
0.2955 (3)	-0.0305(1)	0.0422 (3)	0.141 (2)
0.2610(2)	0.0440(1)	-0.0082(3)	0.111 (1)
0.1555 (2)	0.06761 (9)	-0.1213(2)	0.099(1)
0.0531 (2)	0.01972 (9)	-0.2116 (2)	0.103(1)
-0.0374(2)	-0.01702 (9)	-0.2910 (2)	0.104(1)
-0.1403 (2)	-0.06484 (9)	-0.3807 (2)	0.106(1)
-0.2484 (3)	-0.0409(1)	-0.4908 (3)	0.130(2)
-0.2824(3)	0.0340(1)	-0.5410 (3)	0.156 (2)
0.1349 (2)	0.14358 (9)	-0.1607 (2)	0.097(1)
-0.0039 (2)	0.1701(1)	-0.2206 (3)	0.112(1)
-0.0256 (3)	0.2405 (1)	-0.2569 (3)	0.130(2)
0.0931 (3)	0.2844(1)	-0.2341 (3)	0.139(2)
0.2309 (3)	0.2583 (1)	-0.1759 (3)	0.142 (2)
0.2533 (3)	0.1881(1)	-0.1390 (3)	0.119(1)
-0.1227 (2)	-0.14073 (9)	-0.3400 (2)	0.100(1)
-0.1549 (3)	-0.1932 (1)	-0.4439 (3)	0.123(1)
-0.1387 (3)	-0.2631 (1)	-0.4034 (3)	0.144 (2)
-0.0906 (3)	-0.2809 (1)	-0.2623 (3)	0.133 (2)
-0.0567 (3)	-0.2296 (1)	-0.1590 (3)	0.134 (2)
-0.0721 (3)	-0.1594 (1)	-0.1996 (3)	0.117(1)
0.1984 (4)	-0.0746 (1)	-0.0045 (5)	0.263 (3)
0.3083 (5)	-0.0326 (2)	0.1862 (4)	0.215 (3)
0.4199 (3)	-0.0497 (2)	0.0454 (5)	0.235 (2)
0.1931 (4)	-0.0587 (2)	0.0750 (4)	0.258 (3)
0.4158 (5)	-0.0384 (2)	0.1300 (6)	0.344 (3)
0.2880 (4)	-0.0724 (1)	-0.0738 (4)	0.200 (3)
0.3524 (2)	0.08790 (6)	0.0843 (2)	0.153 (1)
-0.3513 (2)	-0.08365 (7)	-0.5725 (2)	0.192(1)
-0.1664 (3)	0.07264 (9)	-0.5154 (3)	0.227 (2)
-0.3367 (3)	0.0360(1)	-0.6802 (3)	0.242 (2)
-0.3649 (3)	0.0641(1)	-0.4865 (3)	0.39 (2)
-0.421 (1)	0.0400 (4)	-0.616 (1)	0.175 (2)
-0.279 (1)	0.0714 (4)	-0.430(1)	0.286 (8)
-0.188 (1)	0.0654 (6)	-0.578 (1)	0.48 (1)

Table 2. Geometric parameters (Å, °)

Coloriess			F	,
	C1—C2	1.508 (3)	C8—F8B	1.312 (4)
	C1—F1A	1.237 (6)	C8—F8C	1.248 (5)
	C1F1B	1.398 (6)	C8—F8D	1.32(1)
	C1—F1 <i>C</i>	1.257 (6)	C8—F8E	1.31 (2)
2114 observed reflections	C1—F1D	1.267 (7)	C8—F8F	1.25 (3)
[I > 20 - (D]]	C1—F1E	1.220(7)	C9—C10	1.383 (3)
$[I > 2.0\sigma(I)]$	C1—F1F	1.386 (5)	C9-C14	1.392 (3)
$R_{\rm int} = 0.039$	C2—C3	1.329 (3)	C10-C11	1.389 (3)
$\theta_{\rm max} = 70.0^{\circ}$	C2—F2	1.344 (3)	C11—C12	1.385 (4)
$h = -11 \rightarrow 11$	C3C4	1.432 (3)	C12—C13	1.370 (4)
	C3—C9	1.498 (3)	C13—C14	1.387 (3)
$\kappa = -23 \rightarrow 23$	C4C5	1.199 (3)	C15—C16	1.399 (3)
$l = -12 \rightarrow 0$	C5—C6	1.431 (3)	C15—C20	1.367 (4)
4 standard reflections	C6C7	1.328 (4)	C16-C17	1.387 (3)
frequency: 240 min	C6C15	1.498 (3)	C17—C18	1.370 (4)
intensity deserve 2.01%	C7—C8	1.513 (4)	C18-C19	1.379 (4)
Intensity decay. 2.01%	C7—F7	1.342 (3)	C19-C20	1.393 (3)
	C8—F8A	1.303 (5)		
	C2C1F1A	117.1 (3)	C7—C8—F8B	110.2 (3)
	C2-C1-F1B	107.6 (3)	C7-C8-F8C	113.2 (3)
Waighting scheme hasad	C2-C1-F1C	113.1 (4)	C7-C8-F8D	110.0 (7)
weighting scheme based	C2-C1-F1D	112.1 (4)	C7-C8-F8E	107 (1)
on measured e.s.d.'s	C2-C1-F1E	114.3 (4)	C7—C8—F8F	116. (1)
$(\Delta/\sigma)_{\rm max} = 0.077$	C2-C1-F1F	108.7 (3)	F8A-C8-F8B	102.3 (4)
•		··· (- /		

F1A—C1—F1B	99.5 (6)	F8A—C8—F8C	107.2 (4)
FIA—CI—FIC	115.2 (6)	F8 <i>B</i> —C8—F8C	110.6 (5)
F1B-C1-F1C	101.8 (5)	F8D-C8-F8E	99. (1)
F1D-C1-F1E	114.6 (7)	F8D-C8-F8F	121. (2)
F1D-C1-F1F	98.0 (5)	F8E—C8—F8F	100. (2)
F1 <i>E</i> —C1—F1 <i>F</i>	107.6 (7)	C3-C9-C10	119.7 (2)
C1-C2-C3	128.9 (2)	C3-C9-C14	121.1 (2)
C1C2F2	109.5 (2)	C10-C9-C14	119.2 (2)
C3-C2-F2	121.6(2)	C9-C10-C11	120.6 (2)
C2-C3-C4	120.1 (2)	C10-C11-C12	119.6 (2)
C2-C3-C9	123.4 (2)	C11—C12—C13	120.0 (2)
C4C3C9	116.5 (2)	C12-C13-C14	120.6 (2)
C3-C4-C5	176.1 (2)	C9-C14-C13	119.9 (2)
C4C5C6	176.2 (2)	C6-C15-C16	120.9 (2)
C5-C6-C7	120.0 (2)	C6-C15-C20	120.0 (2)
C5-C6-C15	116.9 (2)	C16-C15-C20	119.2 (2)
C7-C6-C15	123.1 (2)	C15-C16-C17	119.7 (3)
C6C7C8	128.8 (2)	C16-C17-C18	120.4 (2)
C6C7F7	121.6 (2)	C17-C18-C19	120.4 (2)
C8-C7-F7	109.6 (2)	C18-C19-C20	119.3 (3)
C7—C8—F8A	112.8 (3)	C15-C20-C19	121.1 (2)
C1-C2-C3-C4	2.0 (4)	C4—C5—C6—C7	-177 (4)
C1—C2—C3—C9	-178.9 (2)	C4-C5-C6-C15	6 (4)
F2-C2-C3-C4	-175.2 (2)	C5—C6—C7—C8	0.5 (4)
F2—C2—C3—C9	4.0 (4)	C5—C6—C7—F7	-176.3 (2)
C2-C3-C4-C5	169 (4)	C15—C6—C7—C8	177.7 (3)
C9—C3—C4—C5	-10 (4)	C15—C6—C7—F7	0.9 (4)
C2-C3-C9-C10	- 144.7 (2)	C5—C6—C15—C16	- 144.9 (2)
C2-C3-C9-C14	35.8 (3)	C5-C6-C15-C20	33.9 (3)
C4-C3-C9-C10	34.5 (3)	C7-C6-C15-C16	37.8 (4)
C4-C3-C9-C14	- 145.0 (2)	C7—C6—C15—C20	-143.4 (3)
C3-C4-C5-C6	- 175 (3)		

Backgrounds were obtained from analysis of the scan profile (Blessing, Coppens & Becker, 1974)

Data collection: CAD-4 (Enraf-Nonius, 1977). Cell refinement: CAD-4. Data reduction: PROCESS MolEN (Fair, 1990). Program(s) used to solve structure: direct methods (MUL-TAN; Main et al., 1980). Program(s) used to refine structure: LSFM MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: CIF VAX (MolEN).

DJB thanks the National Science Foundation for support of this work and a graduate fellowship (PAM).

Lists of structure factors, least-squares-planes data, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1151). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Blessing, R. H., Coppens, P. & Becker, P. (1974). J. Appl. Cryst. 7, 488-492.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- Morken, P. A., Burton, D. J. & Swenson, D. C. (1994). J. Org. Chem. 59, 2119–2121.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 2351-2353

1,3,5-Tri-*tert*-butyl-5-(1,3,5-tri-*tert*-butyl-4-oxo-2,5-cyclohexadienyl)methylbicyclo-[4.1.0]hept-3-en-2-one, a Highly Hindered Propane

Anton Rieker,^{*a*} Markus Neumayer^{*b*} and Wolfgang Hiller^{*b*}

^aInstitut für Organische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany, and ^bAnorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany. E-mail: hiller@hi1d25.anorg.chemie. tu-muenchen.de

(Received 21 February 1996; accepted 1 April 1996)

Abstract

The title compound, $C_{38}H_{62}O_2$, is one of the reaction products of diazomethane with two equivalents of 2,4,6tri-*tert*-butylphenoxyl. In the crystal structure, the cyclopropane ring is almost perpendicular to the basal plane of the boat-configured cyclohexenone ring.

Comment

2,4,6-Tri-*tert*-butylphenoxyl, (1), reacts with diazomethane to give two formal 1:1 addition products, (2) and (3), after elimination of N₂ (Müller, Renner & Rieker, 1968; Rieker, Renner & Müller, 1969). The structures of (2*a*) and (3) were originally derived from chemical reactivity and ¹H NMR (60 MHz) also using deuteriated analogues of (2) and (3) obtained from CD_2N_2 or 3,5-dideuterio-2,4,6-tri-*tert*-butylphenoxyl.

Acta Crystallographica Section C ISSN 0108-2701 © 1996